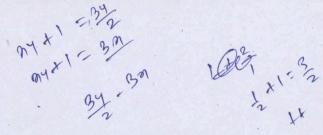
No. of Questions: 150

प्रश्नों की संख्या: 150

Time: $2\frac{1}{2}$ Hours

Full Marks: 450

समय : $2\frac{1}{2}$ घण्टे


पूर्णाङ्क : 450

Note: (1) Attempt as many questions as you can. Each question carries 3 (Three) marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

> अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 (तीन) अंकों का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जायेगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शुन्य होगा।

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one. यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।
- **01.** The value of $\frac{9}{20} \left[\frac{1}{5} + \left\{ \frac{1}{4} + \left(\frac{5}{6} \frac{1}{3} + \frac{1}{2} \right) \right\} \right]$ is equal to :

(1) 0 (2) $\frac{1}{4}$ (3) $\frac{9}{10}$

02. The solution of simultaneous equation $x + \frac{1}{y} = \frac{3}{2}$ and $y + \frac{1}{x} = 3$ is:

(1)
$$x = 1, y = \frac{1}{2}$$

(2)
$$x = \frac{1}{2}, y = 1$$

(3)
$$x = 1, y = 1$$

(4)
$$x = 1, y = -1$$

(1) $x = 1, y = \frac{1}{2}$ (2) $x = \frac{1}{2}, y = 1$ (3) x = 1, y = 1(4) x = 1, y = -1(4) x = 1, y = -1(5) y = 0(6) y = 0(7) y = 0(8) y = 0(9) y = 0(1) y = 0(1) y = 0(2) y = 0(3) y = 0(4) y = 0(5) y = 0(6) y = 0(7) y = 0(8) y = 0(9) y = 0(1) y = 0(1) y = 0(2) y = 0(3) y = 0(4) y = 0(5) y = 0(6) y = 0(7) y = 0(8) y = 0(9) y = 0(1) y = 0(1) y = 0(2) y = 0(3) y = 0(4) y = 0(5) y = 0(6) y = 0(7) y = 0(8) y = 0(9) y = 0(1) y = 0(1) y = 0(1) y = 0(1) y = 0(2) y = 0(3) y = 0(4) y = 0(5) y = 0(6) y = 0(7) y = 0(8) y = 0(9) y = 0(1) y

$$(4) n^2$$

04. The value of 7 $\log \frac{16}{15} + 5 \log \frac{25}{24} + 3 \log \frac{81}{80}$ is equal to :

05. The nth term of the series

$$2\frac{1}{2} + 1\frac{7}{13} + 1\frac{1}{9} + \frac{20}{23} + \dots$$
 is:

(1)
$$\frac{20}{5n^2+3}$$

(2)
$$\frac{2}{5n-3}$$

(4)
$$\frac{20}{5n+3}$$

06. The number of subsets of a set containing n distinct object is:

(1)
$${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + \dots + {}^{n}C_{n}$$

(1)
$${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + \dots + {}^{n}C_{n}$$
 (2) ${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}$

$$(3)$$
 $2^n - 1$

$$(4)$$
 $2^n + 1$

In the binomial expansion of $(a - b)^n$, $n \ge 5$, The sum of 5^{th} and 6^{th} terms is zero. Then $\frac{a}{b}$ equals:

$$(1) \quad \frac{n-5}{6}$$

(1)
$$\frac{n-5}{6}$$
 (2) $\frac{n-4}{5}$ (3) $\frac{5}{n-4}$ (4) $\frac{6}{n-5}$

(3)
$$\frac{5}{n-4}$$

$$(4) \quad \frac{.6}{n-5}$$

08. If
$$\Delta = \begin{vmatrix} o & c & b \\ c & o & a \\ b & a & o \end{vmatrix}$$
, then $\Delta =$

$$\begin{vmatrix} b & a & 0 \\ b & a & 0 \end{vmatrix}$$

$$\begin{vmatrix} b^2 + c^2 & 1 & 1 \\ 1 & a^2 + b^2 & 1 \\ 1 & 1 & a^2 + b^2 \end{vmatrix}$$
(2)

$$(2) \begin{vmatrix} ab+bc & bc & ab \\ ab & bc+ca & bc \\ ca & ab & ca+ab \end{vmatrix}$$

(3)
$$\begin{vmatrix} b^2 + c^2 & a^2 & a^2 \\ b^2 & c^2 + a^2 & b^2 \\ c^2 & c^2 & a^2 + b^2 \end{vmatrix}$$

(3)
$$\begin{vmatrix} b^2 + c^2 & a^2 & a^2 \\ b^2 & c^2 + a^2 & b^2 \\ c^2 & c^2 & a^2 + b^2 \end{vmatrix}$$

09. If A $\begin{bmatrix} -1 & 2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} -4 & 1 \\ 7 & 7 \end{bmatrix}$, then A equals to:

$$(1) \begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix} \qquad (2) \begin{bmatrix} -1 & 1 \\ 2 & 3 \end{bmatrix}$$

$$(2) \qquad \begin{bmatrix} -1 & 1 \\ 2 & 3 \end{bmatrix}$$

$$(3) \quad \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \qquad (4) \quad \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$

$$(4) \quad \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$

10. The equations:

$$3x + y + 2z = k$$

$$x + 2y + 3z = 1$$

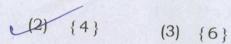
$$2x + 3y + z = m$$

- (1) have a unique solution
 - are inconsistent (2)
 - have a trivial solution (3)
- have infinitely many non-trivial solutions.
- **11.** If A = {0, 1, 3, 5}, B= $\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}\right\}$ and C = $\left\{\frac{1}{5}, 3\right\}$, then the value of (A U B) UC is equal to

(1)
$$\left\{0, 1, 3, 5, \frac{1}{7}\right\}$$

$$(2) \quad \left\{0, 1, 3, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}\right\}$$

(3)
$$\left\{0, 1, 3, 5, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}\right\}$$
 (4) $\left\{0, 3, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}\right\}$


$$(4) \quad \left\{0, 3, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}\right\}$$

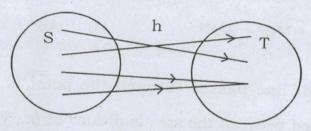
12. For all sets A, B and C, if $A \subseteq B$ and $B \subseteq C$ and $C \subseteq A$, then :

(3)
$$A = 0$$

$$(4) B = \phi$$

- **13.** If $A = \{1, 2, 3, 4\}$, $B = \{2, 4, 6, 8\}$ and $C = \{3, 4, 5, 6\}$, then $(A \cap B) \cap C$ is equal to:
 - (1) {2}

(4) ø


1234 68.

14. Which of the following statements is true?

(2)
$$A \subset B \Rightarrow A \cap B = \phi$$

(3) If
$$A \subset B$$
, then $A \cap (A - B) = \phi$

- (4) $A \cap B = \phi$ implies either $A = \phi$ or $B = \phi$
- **15.** The mapping $h: S \to T$ in the following diagram is:

(1) Many-one into

(2) One-one into

(3) One-one onto

- (4) Many one onto
- **16.** If $A = \{-2, -1, 0, 1, 2\}$ and the function $f : A \to R$ be defined by the formula $f(x) = x^2 + 1$, then the range of is :
 - (1) {0, 5, 2, 1}

(2) {5, 2, 1}

(3) {0, 5, 2}

- (4) (0, 2, 1)
- 17. If A, B, C be sets and $R \subseteq A \times B$ and $S \subseteq B \times C$, then the value of (SOR)-1 is equal to:
 - (1) R-1 0 S-1

(2) R-1 O A-1

(3) S-1 0 B-1

(4) A-1 O C-1

18. It A be the set of all triangles in a plane and R be the relation in A defined by x Ry if and only if x is congruent to y, $x \in A$, $y \in A$, then R is an:

Reflexive relation (1)

Anti-symmetric relation (2)

Transitive relation (3)

Equivalence relation (4)

19. If M is the mid point of the side BC of the triangle ABC, then:

(1) $AB^2 + AC^2 = AM^2 + BM^2$

 $AB^2 + AC^2 = 2AM^2 + 2BM^2$ (2)

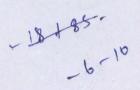
(3) $AM^2 + MB^2 = 2AC^2$

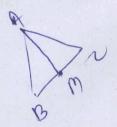
(4) $2AB^2 + 2AC^2 = AM^2 + BM^2$

20. A straight line passes through the point (x_1, y_1) . If its portion intercepted between the ares is divided at (x_1, y_1) in the ratio m: n, then its equation is:

(1) $mx x_1 + ny y_1 = m + n$ (2) $n x x_1 + my y_1 = m + n$

(3) $\frac{mx}{x_1} + \frac{ny}{y_1} = m + n$ (4) $\frac{nx}{x_1} + \frac{my}{y_1} = m + n$


21. The equation of the straight line passing through the point of intersection of 4x + 3y = 8 and x + y = 1, and the point (-2, 5) is:


(1) 9x + 7y - 17 = 0

(2) 4x + 5y + 6 = 0

 $(3) \quad 3x - 2y + 19 = 0$

 $(4) \quad 3x - 4y - 7 = 0$

22. The equation of the circle passing through (-1, 2) and concentric with $x^2 + y^2 - 2x - 4y - 4 = 0$ is:

(1)
$$x^2 + y^2 - 2x - 4y + 8 = 0$$

(2)
$$x^2 + y^2 - 2x - 4y + 4 = 0$$

(3)
$$x^2 + y^2 - 2x - 4y + 1 = 0$$
 (4) $x^2 + y^2 - 2x - 2y + 2 = 0$

(4)
$$x^2 + y^2 - 2x - 2y + 2 = 0$$

The angle between two straight lines represented be the equation $6x^2 + 5xy - 4y^2 + 7x + 13y - 3 = 0$ is:

(1)
$$\tan^{-1} \frac{3}{5}$$

(1)
$$\tan^{-1}\frac{3}{5}$$
 (2) $\tan^{-1}\frac{5}{3}$ (3) $\tan^{-1}\frac{2}{11}$ (4) $\tan^{-1}\frac{11}{2}$

(3)
$$\tan^{-1} \frac{2}{11}$$

- **24.** The focal distance of a point on the parabola $y^2 = 8x$ is 4. Its ordinates

$$(1) \pm 1$$

$$(2) \pm 2$$

$$(3) \pm 3$$

- **25.** The line y = mx + c touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, if c is equal to:

(1)
$$\pm \sqrt{a^2 - m^2 b^2}$$

(2)
$$\pm \sqrt{a^2 m^2 + b^2}$$

(3)
$$\pm \sqrt{a^2 + m^2 b^2}$$

(4)
$$\pm \sqrt{a^2 m^2 - b^2}$$

26. The line $x \cos \theta + y \sin \theta = p$ will touch the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ if :}$$

(1)
$$p^2 = a^2 \cos^2 \theta - b^2 \sin^2 \theta$$

(2)
$$p^2 = a^2 \sin^2 \theta - b^2 \cos^2 \theta$$

(3)
$$p^2 = a^2 \cos^2 \theta + b^2 \sin^2 \theta$$

(4)
$$p^2 = a^2 \sin^2 \theta + b^2 \cos^2 \theta$$

27. If x_1 , x_2 , x_3 as well as y_1 , y_2 , y_3 are in A.P., then the points (x_1, y_1) , $(x_2, y_2), (x_3, y_3)$ are:

concylic

- (3) Three vertices of a parallelogram The virtues of a triangle
- **28.** If bx + ay = ab touches the circle $x^2 + y^2 = r^2$, then the point $\left(\frac{1}{a}, \frac{1}{b}\right)$ lies on:

a circle (1)

(2) an ellipse

(3) a straight line

(4) a parabola

29. The $\lim_{x\to 0} \left[(1+x)^n - 1 \right]$ is equal to :

(1) $\frac{1}{n}$ (2) $-\frac{1}{n}$ (3) n^2 (4) n

30. The function $f(x) = \frac{x-1}{1+e^{1/(x-1)}}$, $x \ne 0$ is continuous for x = 1 when f(1)equals:

(1) -1

(2) 0

(3)

(4) 2

31. If $\sin (x + y) = xy$, then $\frac{dy}{dx}$ is equal to :

- **32.** The equation of tangent to the curve $y^2 = 2x^3 x^2 + 3$ at the point (1, 4) is:
 - $(1) \quad x = 2y$
- $(2) \quad x = 4y$
- (3) y = 2x

- (4) y = 4x
- **33.** Let $f'(c) = 0 = f'(c) = \dots = f^{n-1}(c)$ and $f^n(c) \neq 0$. If n is even, then:
 - (1)f(c) is not an extreme value
 - f(c) is a minimum value if $f^n(c) = 0$
 - (3)f(c) is a minimum value if $f^n(c) > 0$
 - f(c) is a maximum value if fn (c) > 0
- **34.** The value of $\int e^x \left(\frac{1 + x \log x}{x} \right) dx$ is equal to :
 - (1) x ex

(3) $\frac{e^x}{}$

- $(4) \quad e^{x} + \log x$
- **35.** The value of $\int_0^{\pi/2} \log(\tan x) dx$ is equal to:
 - (1) 0
- (2) $\frac{x}{4}$ (3) $\frac{x}{2}$

- **36.** The value of $\int \frac{1}{e^x 1} dx$ is equal to :
 - (1) $\log (e^x 1) x \log x$ (2) $\log (e^x + x) + x \log x$
 - (3) $\log (e^x 1) x$ (4) $\log (e^x 1) + x$

The volume and surface of a spherical cap of height h cut off from a sphere of radius r are:

(1)
$$\frac{2}{3}h^2\left(r-\frac{1}{3}h\right)$$
; $\frac{2}{3}$ rh (2) $2h^2\left(r-\frac{1}{3}h\right)$; $2rh$

(2)
$$2h^2\left(r-\frac{1}{3}h\right)$$
; 2rh

(3)
$$\frac{1}{3}h^2\left(r-\frac{1}{3}h\right); \frac{1}{3}rh$$

(3)
$$\frac{1}{3}h^2\left(r-\frac{1}{3}h\right); \frac{1}{3}rh$$
 (4) $\frac{1}{2}h^2\left(r-\frac{1}{3}h\right); \frac{1}{2}rh$

38. If f(x) and all its derivatives upto the (n-1)th order be continuous in [a, a + h] and fn (x) exists in] a, a + h [, then there exists a real numbers θ , $0 < \theta < 1$, such that :

(1)
$$f(a + h) = f(a) + h f'(a) + \frac{h^2}{2!} f''(a) + \dots + \frac{h^{n-1}}{(n-1)!} f^{n-1}(a)$$

$$+\frac{h^{n}}{(n-1)!}(1-\theta)^{n-1}f^{n}(a+\theta h)$$

(2)
$$f(a + h) = f(a) + h f'(a) + \frac{h^2}{2!} f''(a) + \dots + \frac{h^{n-1}}{(n-1)!} f^{n-1}(a)$$

$$+\frac{h^n}{n!}f^n(a+\theta h)$$

- (3) either (1) or (2)
- (4) Neither (1) nor (2)
- 39. The order of a differential equation is defined as:
 - the power of highest derivative in the equation (1)
 - the power of lowest derivative in the equation (2)
 - the order of lowest derivative occurring in the equation (3)
 - the order of highest derivative occurring in the equation (4)

40. The degree of the differential equation:

$$\left[3 + 4\left(\frac{dy}{dx}\right)^{2} + 5\left(\frac{d^{2}y}{dx^{2}}\right)\right]^{2/3} = \left(\frac{d^{3}y}{dx^{3}}\right)^{2}$$
(1) 6 (2) 5 (3) 4 (4) 3

41. The auxiliary equation of the differential equation

$$3\frac{d^3y}{dx^3} + 4\frac{d^2y}{dx^2} - 3y = e^x + \sin^{-1}x$$
 is:

(1)
$$3\frac{d^3y}{dx^3} + 4\frac{d^2y}{dx^2} - 3y = e^x$$

(1)
$$3\frac{d^3y}{dx^3} + 4\frac{d^2y}{dx^2} - 3y = e^x$$
 (2) $3\frac{d^3y}{dx^3} + 4\frac{d^2y}{dx^2} - 3y = \sin^{-1}x$

(3)
$$3\frac{d^3y}{dx^3} + 4\frac{d^2y}{dx^2} - 3y = 0$$

(3)
$$3\frac{d^3y}{dx^3} + 4\frac{d^2y}{dx^2} - 3y = 0$$
 (4) $3\frac{d^3y}{dx^3} + 4\frac{d^2y}{dx^2} - 3y = e^x \sin^{-1} x$

42. The general solution of the linear differential equation

$$a_c \frac{d^n y}{dx^n} + a_1 \frac{d^{n-1} y}{dx^{n-1}} + a_2 \frac{d^{n-2} y}{dx^{n-2}} + \dots + a_{n-1} \frac{dy}{dx} + ay = x$$
 is given by:

- (1) y = complementary function (C. F.)
- (2) y = particular integral (P. I.)
- (3) $y = C. F. \times P. I.$
- (4) y = C. F. + P. I.
- 43. The particular integral of the differential equation

$$\frac{d^2y}{dx^2} - y \frac{dy}{dx} + 13y = 24 e^{2x} \sin 3x$$
 is given by:

(1)
$$-8 e^{2x} \sin 3x$$

(2)
$$-8 e^{2x} \cos 3x$$

(3)
$$-4 e^{2x} \cos 3x$$

(4)
$$-4 \times e^{2x} \sin 3x$$

44. The solution of $\frac{dy}{dx} = \frac{xy + y}{xy + x}$ is given by :

(1) $c y = x e^{y-x}$

(2) $c x = y e^{y-x}$

(3) $c y = x e^{x-y}$

(4) $c x = y e^{x-y}$

45. Which one of the following differential equations is linear:

(1) $4y\left(\frac{dy}{dx}\right)^2 + \frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^4 + 3$ (2) $\left(\frac{d^3y}{dx^3}\right)^2 + 2\left(\frac{dy}{dx}\right)^4 + yx = 0$

(3) $(2xy + 2x^3) \frac{dy}{dx} y^2 + 6x^2y = 0$ (4) $\frac{d^2y}{dx^2} + x^2 \frac{dy}{dx} - y = 0$

46. Which one of the following provides a general solution of the differential equation $\sec^2 x \tan y dx + \sec^2 y \tan x dy = 0$?

tan x tan y = c

(2) $\tan x + \tan y = c$

 $\sec x \sec y = c$

(4) $\sec x + \sec y = c$

47. Let the vectors \vec{a} , \vec{b} , \vec{c} be the position vectors of the vertices P, Q, R of a triangle respectively. Which of the following represents the area of triangle?

 $(1) \quad \frac{1}{2} |\vec{a} \times \vec{b}|$

(2) $\frac{1}{2} |\vec{b} \times \vec{c}|$

(3) $\frac{1}{2} |\vec{c} \times \vec{a}|$

(4) $\frac{1}{2} | \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} |$

48. If ABC is a triangle, then the value of $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$ is equal to:

(1) 0

(2) 1 (3) 2

- **49.** The value of λ so that the unit vectors $\frac{2\hat{i} + \lambda \hat{j} + \hat{k}}{\sqrt{5 + \lambda^2}}$ and $\frac{\hat{i} 2\hat{j} + 3\hat{k}}{\sqrt{14}}$ are orthogonal is:
- (1) $\frac{3}{7}$ (2) $\frac{5}{2}$ (3) $\frac{2}{5}$ (4) $\frac{2}{7}$

- **50.** The vector $(\vec{a} \vec{b}) \times (\vec{a} + \vec{b})$ is equal to :
 - (1) $\frac{1}{2} (\vec{a} \times \vec{b})$

(2) $\vec{a} + \vec{b}$

(3) $2(\vec{a} \times \vec{b})$

- (4) $2(\vec{a} + \vec{b})$
- **51.** If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors and $\vec{d} = \lambda \vec{a} + \mu \vec{b} + \gamma \vec{c}$, then λ is equal to:
- 52. The position vector of the points A, B, C and D are $3\hat{i} - 2\hat{j} - \hat{k}$, $2\hat{i} + 3\hat{j} - 4\hat{k}$, $-\hat{i} + \hat{j} + 2\hat{k}$ and $4\hat{i} + 5\hat{j} + \lambda\hat{k}$. It is know that these points are coplanar, then $\hat{\lambda}'$ is equal to :

 - (1) $-\frac{146}{17}$ (2) $-\frac{137}{17}$ (3) $-\frac{154}{17}$
- $(4) -\frac{164}{17}$
- **53.** The position vectors $60 \hat{i} + 3 \hat{j}$, $40 \hat{i} 8 \hat{j}$, a $\hat{i} 52 \hat{j}$ are collinear if:
 - (1) 20
- -20
- (3) 40

- **54.** The value of $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to :
 - $(\vec{a} \cdot \vec{b}) \vec{a} + (\vec{a} \cdot \vec{b}) \vec{c}$ (1)
- (2) $(\vec{b} \cdot \vec{c}) \vec{a} (\vec{b} \cdot \vec{c}) \vec{b}$

(3) $(\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$

- (4) $(\vec{c} \cdot \vec{a}) \vec{a} (\vec{b} \cdot \vec{a}) \vec{c}$
- 55. The shortest distance between two straight lines whose vector equation

 $\vec{r} = \hat{i} + \hat{j} + \lambda (2 \hat{i} - \hat{j} + \hat{k})$ and

 $\vec{r} = 2\hat{i} + \hat{j} - \hat{k} + \mu(3\hat{i} - 5\hat{j} + 2\hat{k})$ is:

- (1) $\frac{5}{\sqrt{59}}$ (2) $\frac{10}{\sqrt{59}}$ (3) $\frac{\sqrt{59}}{5}$

56. The angle between straight line

 $\vec{r} = (\hat{i} + 2\hat{j} - \hat{k}) + \lambda (\hat{i} - \hat{j} + \hat{k})$

and plane $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) = 4$ is:

 $(1) \quad \sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$

(2) $\cos^{-1}\left(\frac{2\sqrt{2}}{3}\right)$

(3) $\sin^{-1}\left(\frac{3\sqrt{2}}{2}\right)$

- (4) $\cos^{-1}\left(\frac{3\sqrt{2}}{2}\right)$
- 57. The value of $\frac{\tan A + \sec A 1}{\tan A \sec A + 1}$ is equal to:
 - $\frac{1+\cos A}{\sin A}$ (1)

 $\frac{1-\cos A}{\sin A}$

 $1 + \sin A$ (3) cos A

58. The value of $2 \sin^2 \beta + 4 \cos (\alpha + \beta) \sin \alpha \sin \beta + \cos 2(\alpha + \beta)$ is equal to:

(1) $\sin 2\alpha$

(2) $\cos 2\alpha$ (3) $1 + \sin \alpha$ (4) $1 + \cos \alpha$

59. The value of θ in the trigonometric equation $\sin^2\theta - \cos\theta = \frac{1}{4}$, in the interval $0 \le \theta \le 2\pi$ are:

(1) $\frac{\pi}{4}, \frac{5\pi}{4}$ (2) $\frac{3\pi}{4}, \pi$ (3) $\frac{2\pi}{3}, \frac{4\pi}{3}$ (4) $\frac{\pi}{3}, \frac{5\pi}{3}$

60. If sin A = sin B and cos A = cos B, then the values of A in terms of B is:

(1) $A = 2n \pi - B$

 $A = 2n \pi + B$

(3) $A = n \pi - B$

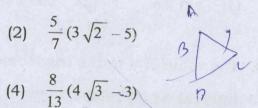
 $(4) A = n \pi + B$

61. In any triangle ABC, the value of $\frac{b^2 - c^2}{a^2}$ is equal to

(2) $\frac{\sin(B+C)}{\sin(B-C)}$

 $(3) \quad \frac{\cos{(B-C)}}{\cos{(B-C)}}$

(4) $\frac{\cos{(B+C)}}{\cos{(B-C)}}$

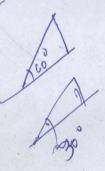

62. If p₁, p₂, p₃ are the altitudes of a triangle from the vertices A, B, C and Δ , the area of the triangle, then value of $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3}$ is:

 $(1) \quad \frac{ab}{(a+b+c)\Delta} \cos^2 C$

 $(2) \quad \frac{ab}{(a+b+c)\Delta} \sin^2 C$

(3) $\frac{2ab}{(a+b+c)\Delta}\cos^2\frac{1}{2}C$ (4) $\frac{2ab}{(a+b+c)\Delta}\sin^2\frac{1}{2}C$

- **63.** If in a \triangle ABC, \angle C = 90°, a = 3, b = 4 and D is a point on AB so that ∠BCD = 30°, then the lenth CD is equal to:
 - (1) $\frac{5}{7}(3\sqrt{2}+5)$


(3) $\frac{8}{13}(4\sqrt{3}+3)$

- **64.** If a = 5, b = 4 and $\cos (A B) = \frac{31}{32}$, then the third side C will be:
- (2) 6 (3) 5
- 65. A persion standing on the bank of a river observes that the angle subtended by a tree on the opposite bank is 60°, when he retires 40 feet from the bank the finds the angle to be 30°. The height of the tree and the breadth of the river are:
 - (1) $20\sqrt{3}$, 20

(2) $10\sqrt{3}$, 10

(3) $20\sqrt{2}$, 15

(4) $10\sqrt{2}$, 15

- **66.** If $\sin^{-1}\left(\frac{1}{3}\right) + \sin^{-1}\left(\frac{2}{3}\right) = \sin^{-1} x$, then x is equal to :

 - (1) $\frac{4+\sqrt{5}}{9}$ (2) $\frac{4\sqrt{2}+\sqrt{5}}{9}$ (3) $\frac{\sqrt{3}+1}{6}$
- (4) 1
- 67. The chance of throwing an ace in the first only of two successive throws with an ordinary die is:
 - (1)
- (2) $\frac{5}{36}$ (3) $\frac{1}{36}$

- 68. There are six letters and six addressed envelops. What is the probability that all the letters are not dispatched in the right envelops?
- (2) $\frac{6}{7}$ (3) $\frac{713}{720}$ (4) $\frac{719}{720}$
- **69.** The average of n number $x_1, x_2, x_3, \dots, x_n$ is A. If x_n is replaced by $(n + 1) x_n$, then the new average is:
 - $(1) \quad \frac{(n-1)A + nx_n}{n}$

 $(2) \quad \frac{nA + (n+1)x_n}{n}$

- $(3) \frac{(n+1)A + nx_n}{n}$
- (4) $A + x_n$

- 70. Secondary data:
 - should be used after careful scrutiny (1)
 - should be used without any scrutiny (2)
 - should be used after finding out its source (3)
 - should never be used (4)
- 71. How many classed should be taken while forming a grouped frequency distribution?
 - (1)Five

- Less than five
- Between five and ten (3)
- (4) Any number
- 72. A frequency distribution can be presented graphically by a:
 - (1) pie diagram

(2) histogram

(3)pictogram

cartogram

73.	Whi	ich one of the following is not	the n	neasures of dispersions:						
		Range								
	(3)		(4)	Complex number						
74.	The	coefficients of skewness is eq	ual to							
	(1)	Mean – Mode Standard deviation	(2)	Mean – Median Standard deviation						
	(3)	Median + Mean Standard deviation	(4)	2(Mean + Mode) Standard deviation						
75.	Norr	mal curve $y = y_0 e^{-x^2/2\sigma^2}$ is:								
	(1)	Symmetrical about the x-axis	3							
, (0621	Symmetrical about the y-ax	is. Th	ne mean median and made						
0		coincide at the origin	Stron	two tops of the control of the contr						
	(3) It is not a unimodal curve									
		The points of inflection of no	rmal	curve are equidistant for the						
76.	For P	Poission's distribution M σ r ₁ r	2 is:							
	(1)	< 1 (2) > 1	(3)	0 (4) 1						
77.	If 8x then	-10y + 66 = 0 and $40x - 18the coefficient of correlation by$	By = 2	14 are two regression lines, en x and y is:						
				0.45 (4) 0.3						
	Bo	1 204 + 66 = 0 104 + 66 = 0 20)							
	40	@ \ 8 n - \ 20								

78. If r, σ_x , σ_y have their usual meaning and θ is the acute angle between the two regression lines in case of two variables x and y, then the value of tan θ is equal to:

(1)
$$\frac{1+r^2}{r} \frac{\sigma_x \sigma_y}{\sigma_x + \sigma_y}$$
 (2) $\frac{1+r}{r} \frac{\sigma_x \sigma_y}{\sigma_x - \sigma_y}$

(2)
$$\frac{1+r}{r} \frac{\sigma_x \sigma_y}{\sigma_x - \sigma_y}$$

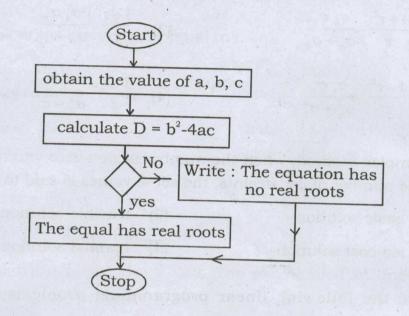
(3)
$$\frac{1-r^2}{r} \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$$
 (4)
$$\frac{1-r}{r} \frac{\sigma_x \sigma_y}{\sigma_x^2 - \sigma_y^2}$$

(4)
$$\frac{1-r}{r} \frac{\sigma_x \sigma_y}{\sigma_x^2 - \sigma_y^2}$$

- 79. In simplex method, when the number of non-zero variables is equal to the number of constraints, the set of values is said to form a:
 - basic solution (1)

- (2) feasible solution
- (3) iso-cost solution
- (4) optimal solution
- 80. Solve the following linear programming problems by Simplex method:

Maximize P = 3x + 7y + 6z Subject to


$$2x + 2y + 2z \le 8$$
.

$$x + y \le 3.$$

$$x, y, z \ge 0.$$

- (1) 21 (2) 23
- (3) 25
- (4) 27
- 81. What is the symbolic form of the following statement? "If wind is form the North and there is halo round the moon, then there will be rains"
 - (1) $(p \vee q) \Rightarrow r$ (2) $p \wedge q \Rightarrow r$ (3) $p \Rightarrow q \vee r$ (4) $q \Rightarrow p \vee r$

82. In the following flow chart for finding the roots of the quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$, what should be written in the empty box to make the flow chart correct?

- (1) is D = 0
- (2) is $D \ge 0$
- (3) is $D \le 0$
- (4) is D = 1
- 83. The base of the binary number system is:
 - (1) 2
- (2) 16
- (3) 8
- (4) 10

- 84. A computer executes at a time:
 - (1) millions of instructions
- (2) only ten instructions
- (3) only two instructions
- (4) only one instruction
- 85. The WHILE -DO control structure executes the loop at least:
 - (1) trice

(2) twice __

(3) once

(4) None of these

86. ABCDE is a pentagon. Forces acting on a particle are represented in magnitude and direction by \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} , $\overrightarrow{2DE}$, \overrightarrow{AD} and \overrightarrow{AE} . Their resultant is given by:

(1) \vec{AE} (2) $2\vec{AE}$ (3) $3\vec{AE}$ (4) $4\vec{AE}$

87. If the line of action of the resultant of two forces P and Q divides the angle between them in the ratio 1:2, then the magnitude of the resultant is:

(1) $\frac{P^2 - Q^2}{Q}$ (2) $\frac{P^2 - Q^2}{P}$ (3) $\frac{P^2 + Q^2}{Q}$ (4) $\frac{F^2 + Q^2}{P}$

88. P and Q are two parallel forces acting at A and B respectively. If they interchange position, then the point of application of the resultancis displaced along AB through a distance:

(1) $\frac{P+Q}{P-Q}AB$ (2) $\frac{P-Q}{P+Q}AB$ (3) $\frac{PQ}{P-Q}AB$ (4) $\frac{PQ}{P+Q}AB$

89. Two parallel forces not having the same line of action form a couple if they are :

(1) like and unequal (2) like and equal

(3) unequal and unlike (4) equal and unlike

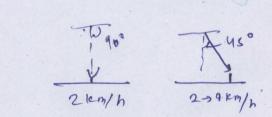
90. Like parallel forces act at the vertices A, B, C of a triangle and are proportional to the lengths BC, CA and AB respectively. The centre of the forces is at the :

(1) centroid (2) circum centre

(3) in-centre (4) mid of one of the side

- 91. ABCD is a square. Equal forces P are acting along AB, CB, AD and DC. Their resultant is a force 2P acting:
 - (1) along DC
 - along AB (2)
 - along AC (3)
 - parallel to AB through the centre of square
- 92. If six forces of relative magnitudes 1, 2, 3, 4, 5 and 6 act along the sides of a regular hexagon taken in order, then the single equivalent force is of relative magnitude is:
 - (1)
- (2)
- (3)
- (4)
- 93. To a man walking at 2km/hr the rain appears to fall vertically, when he increases his speed to 4km/hr it appears to meet him at an angle of 45°. Then the actual velocity of the rain is:

24


 $2\sqrt{2}$ km/hr

 $2\sqrt{3}$ km/hr (2)

 $\sqrt{2}$ km/hr (3)

(4) $\sqrt{3}$ km/hr,

- 94. Displacement has:
 - magnitude only (1)
- (2) sense only
- both sense and magnitude
- (4) absolute quantity

95	. Ac	celeration of a moving point	is:			ar slettner istone
	(1)	a negative quantity	(2	2)	a vector qu	antity W
	(3)	a single number	.(4		a positive	
96.	The	e law of motion is a straight	line	be	eing $s = \frac{1}{2}vt$	t, the acceleratio
	(1)	constant (2) variable	(3)	uniform	(4) unknown
97.	If a	body is falling freely under	gravit	y,	then the ac	celeration :
	(1)	varies as the inverse of the	dista	nc	e travelled	lie en ames
	(2)	varies as the square of the				
	131	is uniform				
(30	(4)	is zero				
98.	The	equation of motion P = ma, i	s due	e to	: UNO	a action a
1	(1)	Newton's first law of motion			1987	
	(2)	Newton's second law of mot	ion			J
	(3)	Newton's third law of motion	1 * 2 2	1		TOS EKEDOY 'S
	(4)	Newton's first and second la		mo	otion	
		time of flight of a particle, which direction making an angle α	nich i	s prive	orojected wi	th the velocity u
	(1)	2u g sin α	(2)		u g cos a	
((3)	$\frac{2u\sin\alpha}{g}$	(4)	2	eu cos α g	

100. If a particle is projected with a velocity u at an angle $\alpha = 45^{\circ}$, then:
(1) the range is minimum (1) the range is minimum
(2) the range is maximum
(3) the range is maximum and equals $\frac{u^2}{2g}$
(4) the time to the highest point is $\frac{u}{g\sqrt{2}}$
101. How many such letter point
101. How many such letter-pairs are there in the word MONKEY having same no. of letters left between the
(1) 4
(1) 4 (2) 3 (3) 2 (4) 1
102. Which is the 8th letter to the right of 15th letter your left in the following series?
ABC.DEFGHIJKLMNOPQRSTUVWXXX
(1) C
(2) H (3) V (4) W
103. If KEDGY is coded as EKDVC than 1
103. If KEDGY is coded as EKDYG then how will LIGHT be coded? (1) ILHTG (2) ILGHT (2) V. S. W. S. W
IS ILGTH (4) THGIL
104. If Hand is coded as Leg, Leg is coded as car, car is coded as Nose,
Nose is coded as Eyes, then by which
Nose is coded as Eyes, then by which part of body you walk on the
(1) Nose (2) Leg (3) Hand
(2) Leg (3) Hand (4) Ear
26

105. As 'House'	is related to	the	'Mason',	similarly	'Furniture'	is related	to
what?							

- (1) Magician
- (2) Carpenter (3)
 - Sailor (4) Tailor
- 106. Letters of which of the alternative answers when placed at the blank places one after another will complete the given letter series?

a — bbc — aab — cca — bbcc

(1) acba

2

5

10

13

15

16

19

20

22

29

29

- (2) bacb
- (3) caba
- (4) abba

107. Ankita is at 25th place from one end in a group of 35 students. What is his position from the other end?

- (1) 10
- (2) 11
- (3) 12
- (4) 15

108. Priya goes 25 km towards south from her fixed place. Then after turning to her right she goes 30 km and then again turning her left she goes 10 km. In the end after turning to her left she goes 30 km. How far is she from her starting point?

- (1) 30 km
- (2) 40 km
- (3) 35 km
- (4) 45 km

109. If 25 is related with 52 in the same way 29 is related to which of the following numbers?

- (1) 11
- (2) 18
- (3) 92
- (4) 22

sound 251cm

P.T.O.

110. In the following question two statements are given and four conclusions I, II, III and IV are given under them. The given statements may be contrary to the universal opinion, even then you have to assume them as true. Then decide which conclusion on the basis of given statement is logically valid.

Statements: All kings are beggars.

All beggars are monks.

Conclusions .I. All beggars are kings.

II. All kings are monks. X

III. Some monks are beggars ~

IV. No monk is beggar

(2) All come

only III and IV (4) only II and III come

111. Introducing Priyanka. Saroj says that her mother is the only daughter of my mother. How is Saroj related to Priyanka?

Mother

(2) Sister

(3) Daughter (4) Aunt property

112. If + means +, + mean -, - means × and × means +, then the value of

(1) 3

(2)

(3) - 28

(4) 112

48+16-4-16 64-20 -44 x

28

48-16×4×2+8 98-128 +8

48-16×4×2×8 48-120

113. Directions. In the following question are statement is followed by two assumptions. On the basis of the statement choose which is/are implicit.

Statement. "Please issue a circular to all the officers to assemble in the conference Hall for attending a notice." Director tells his secretary.

Assumptions. (I) All the officers will fallow the instruction.

- (II) Some officers may not attend the meeting.
- (1) Only assumption II is implicit
- (2) Only assumption I is implicit
 - (3) Either I or II is implicit
- (4) Both II and I are implicit
- 114.Direction. In the following question, four alternatives are given. One of these four shows the most essential component. Hence find out the correct answer. In the desert it is necessary:
 - (1) camel

(2) sand

(3) watermelon

(4) wind

115. Four person P, Q, R and S read a book turn by turn. R reads just before P, Q reads after P but before S. Who does read first?

- (1) P
- (2) Q
- (3) R

(4) Q or R

116. As 'class' is related to 'student' in the same way 'Train' is related to:

(1) Wheel

(2) Rails

(3) Passenger

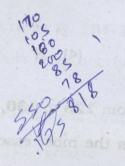
(4) Driver

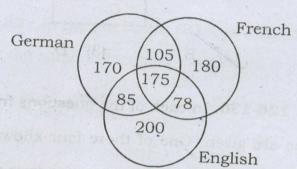
REP, OQ

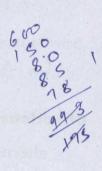
29

P.T.O.

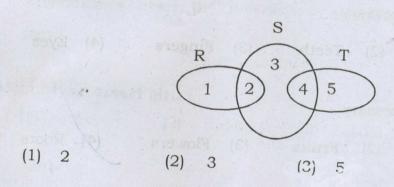
<u> </u>										
	15P/203/4(i)									
	117. The following letter-series which									
LOE.	117. The following letter-series which one of the following alternative would replace the question - mark?									
e pu	BE, DG, FI, HK,			The second second						
4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(1) KM	(2) KN	(3) Lo) (4) JM						
	irections. Q 118-122	2: Data on the	Candidate	s, who took an examination						
	in Social Sciences	, Mathematic	s and Scier	s, who took an examination ce are given below:	on					
	Passed in all subje	ets 167								
1	Failed in Social Sc			all subjects 60	6					
-	Failed in Science			Mathematics 199	6					
الم			Passed in	Social Science only 62						
L	Passed in Mathema	atics only 48	Passed in	Science only 52						
	Answer the following	ng questions b	pased on ab	oove data:						
. 11	8. How many failed i	n one subject	only 2							
	(1) = (2) 61								
			(3) 144	(4) 152						
119	How many failed in	two subject o	nly?							
	(1)	,	(3) 144	(4) 162						
120	. How many failed in	social science	s only 2							
	(1) 15	01	(3) 30	(4) 42						
121.	How many passed at	least in one	Subject 2							
	(1) 167 (2)	204	abject?							

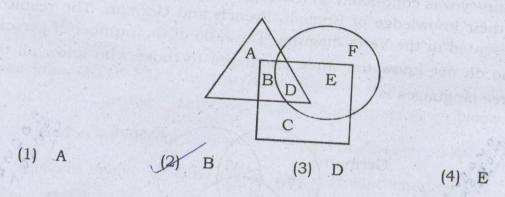

(4) 450


(2) 304 (3) 390


(1) 167

- 122. How many passed in Mathematics and at least in one more subject? (1) 94 (2) 170 (3) 203


- (4) 210
- 123. A survey was conducted on a sample of 1000 persons with reference to their knowledge of English, French and German. The result is presented in the Venn diagram. The ratio of the number of persons who do not know the three languages to those who know all the three languages is:



- (2) $\frac{1}{25}$
- $(3) \frac{7}{550}$
- 124. In the following diagram, R represents businessmen, S represents rich men, T represents honest men. Which number will represent

125. In the given figure, the triangle represents, the square represents sports persons and circle represents coaches. The portion in the figure which represents girls who are sports persons but not coaches is labelled:

Directions: Q. 126-130. In each of the questions from 126 to 130, four alternatives are given. One of these four shows the most essential component. Hence find out the correct answer:

126. In a desert it is necessary -

(1) camel (2) sand (3) watermelon (4) wind

127. In a man it is necessary
(1) Heart (2) Teeth (3) Fingers (4) Eyes

128. In a tree it is necessary
(1) Leaves (2) Fruits (3) Flowers (4) Roots

129. In a country it is necessary -
(1) Prime Minister (2) Army
(4) Industry
130. The most essential for a hospital is -
(1) Air (2) Nurse (3) Telephone (4) Doctor
Directions Q. 131-132 . In the
Directions Q. 131-132: In the questions 131 and 132, choose the word, which is most nearly the same in meaning to the bold word and mark it.
131. His style is quite transparent:
(1) verbose (2) involved (3) lucid (4) witty
132. High:
(1) Tall (2) Short (3) Fat (4) Thin
Directions, O. 133-124
Directions. Q. 133-134: In the questions 133 and 134, choose the word
which is most nearly the OPPOSITE in meaning to the bold word and mark it.
133. Lucy is a smart girl.
(1) active (2) indecent (3) casual (4) lazy

34. Day : (1) y	vear	(2) month	(3)	night	(4) hour				
		Abba Ist							
Direction. Q. 135 : In the following questions 135 , sentences are given with blanks to be filled in with appropriate words. Choose correct alternative out of the four and mark it.									
135. He g	ranted the	request becau	se he w	as	tohis				
frien									
	sure, disple	easure	(2)	unwilling	g, please				
(3)	reluctant,		(4)	bound, l	nurt				
136. The	heart and t	he nerve centr	e of a co	mputer is	its:				
	C.P.U.			memory					
	output un	it	(4)	input u	nit				
137. A fin	137. A finite sequence of steps needed to solve a problem is called a/an:								
(1)	method of		(2)						
(3)	algorithm		-(4)	flow-cha	art				
138. Main memory unit of a computer:									
	performs								
(2)	amount of data and instructions								
(3)	in Clate and instructions								
(4)	the units								

- 139. The symbolic statement i = i + a is true, if here i stands for multiplicative identity.
 - (1) not true in any algebra
 - (2) in both the algebras
 - (3) only in ordinary algebra
 - (4) only in Boolean algebra
- 140. If a, b, c are elements of a Boolean algebra, then ab + c (a' + b') will be equal to:
 - (1) a + bc

(2) ab + c

(3) ac + b

(4) a' + bc

- 141. A CPU consist of:
 - (1) input, output unit
 - (2) memory unit
 - (3) arithmetic and logical unity control unit
 - (4) back-up devices
- 142.C is a:
 - (1) Middle level language

High level language

- (3) Low level language
- None of the above
- 143. Which of the following shows the correct hierarchy of arithmetic operations in C:
- (3) (), **, /, *, +, -
- (1) (), **, * or /, + or (2) (), **, *, /, +, (3) (), **, /, *, +, (4) (), / or *, or +

144. Wh	ich of the following is	a storage cla	ss specifica	ation of C?	
(1)	Automatic	(2)			
(3)	Internal	14)	All of the	above	
145.In	C, structive values car	n be passed a	s argument	s to functions	s by:
(1)	passing each number function code	er of the struc	cture as an	actual argun	nent o
(2)	passing a copy of th	e entire struc	ture to the	called function	on
(3)	passing the structur				
(4)	All of the above				
146 . Whi	ch newspaper has the	motto	Jour	nalism of cou	rage?
(1)	The Hindustan Time	s (2)	The Wash	ington Post	
(3)	The Indian Express	(4)	The Guard	lian	
exte	50% (2) 25	of over 63 of th % (3)	3,000 rot ne network 45%	ute kilome is electrified.	ters.
148. The	National Literacy Miss	sion (NLM) see	eks to achie	eve full literac	wie
a sus	stainable threshold le	evel of 75% lit	eracy by ye	ear:	y 1.c.
	2005 (2) 20		2015	d4) 2020	

149. Who appointed the Governor of a State?

- (1) The President of India
- (2) Chief Justice of India
- (3) Prime Minister of India
- (4) Vice-President of India

150. Bhopal gas tragedy is associated with the leakage of:

(1) ethylcyanide

- (2) phenyl isocyanate
- (3) methyl isocyanate
- (4) methyl isocyanide